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Neural Network Prediction of

Aluminum-Lithium Weld Strengths
From Acoustic Emission Amplitude Data

by Eric v. K. Hill,* Peggy L Israel,* and Gregory L. Knotts_

Absh'oc)

.4c_ustic emission (AE) flaw growth ac,qtqty was monitored in

a;:;m'num-lithium weld specimens from the onset of teTzs& loading to

(:'."ure Data on actual ultimate s,'-rentghs togetlwr "¢qthAE data ;tram the

bcg:::,-'ng of loading up to 25 percent of the expected ultimate s_tnlg't.h

:,ere used to train a back-propagation neural network to predict ultimate

strc,;g_'ns. Architecturally, the fully interconnected net-work corMsted of

a:7 i,:Tut L,,'yerfor the AE am_Iitude data, a hidden layer 1o accommodate

9,il'_'re mechanism rtmpl_g , and an out'put layer for ulffmaLe s_en_h

?redic.q_n; The trained net',oork was then applied to the vrediction of

_-ror =_-,.sfvund to be +2.6 percent. -

K_,z>ords:acousticemissfon,aluminum-lithium,ampli,_adedis,'_.L,',u,'-ion,

:kTrcpagation, failure mechanism, neural net'a_ork, ultimate s,_e_Tgth.

INTRODUCTION
The 2195-T87 alumLnum-Hthium alloy is beLng considered as a

replacement material for the 2219-'/'87 aJuminum cm-rentlv in use

on =_e Space Shuttle External Tank. Both materials exhJ'_it good
we]dabflJty and strength, but the alu.mmu.m-lit.h.ium ,_',less dense

and 2 5 percent stronger, thereby prox,iding extra payload capadvy;
hence, the incentive for change. Because variable l_%%.,--_typlasma

arc ",,'elding is the prindpal method of joining, and the welds are

_pica2y the weakest linkdNu.nes et al., 1984), weld strength is

paramount to external tank sb-u_ integrity. A met.hod is devel-

oped here for predicting ultimate weld strengths at proof loads as

low as 25 percent of the expected ultimate using acoustic emission
(.kE) data.

The AE data taken during proof loading have been correlated
_.ith u.ltG-',a te strengthsinboth composites (Kalloo, 1988; H21, ]992;
and Walker, 199,2) and in metals (Hill and K.notts, 1993). These

co_e!ationsused such A.E parametric data as ampEt_ade, energy,

and event rate to quanth-_y the AE signals generated by the various

failure mechanisms. Thus, ,aLEdata contain L"dorma tion concerning
..... , mecharusms which can be correJa tea to mv..m ate srren_ns m
en W_,_ee:'ing mat_.

The different characteristics of the .KE signals correspond to

different deformation and failure mechanisms during loading. For

example, rubbing noises (from specimen grips) and plastic defor-
mation generate AE signals that are similar to one another but

_-pica3y very much different from the AE signals produced by
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crack _owth or intermetaEic precipitate &acem-es (McBride et al.,
1981). SL'_ce each of these deformation and failure mechanisms

con_butes m va.D-ing degrees to the s_'uchaml integrity of a
_,.nsLhed part, Ln generathng an ultimate strength prediction equa-

tion, the .4]_assodated _-ith each mecha='_sm must be weighted

d&fferenfiy (have a different coefficient). The .a.E events assodated

_th rubbing and plastic deformation, which cont_bute little or

nothing to the ultimate strength, would have weighGng fi.mctSons

(coeffidents) approaching zero, while those that con_bute s_gnLfi-

ca_ufly, such as crack growth or intermetal_c predpitate fractures,

would have large coefficients. Neural networks prm,ide an auto-

mated technique for sorting out the AE associated with the various

mechaz,_ms and determL-'&ug the appropriate coefficients or we2ght-

ing fi_nc"dons (Sach_ and Grabec, 1992). Therefore, neural net-

works were employed in this research to generate ult_na te strength

pred]c_ons from the AE amplitude data.

NEURAL NETWORK TRAINING
Acoustic Emission Amplitude Distributions

The acoustic en_ssion amplitude parameter, A [dB], iS a

logrith._-dc representation of the peak signal voltage, V [V], of the
.A.E waveforln

(1) A = 20 logCVIVO

For most applications, V, = 1 pV at the sensor output is chosen

as the 0 dB reference because it is the lowest detectable voltage, just

slightly above the noise level of the system electromcs. Here the AE

sensor contained a built-in 40 dB preamplifier;, consequently, 0 dB

was referenced to 100_V at the preamplified sensor output (M.itchelt,
1984).

Acoustic en-dssionamplitude distributions(events vs. ampli-

t-udeh.istogra.n-Ls)have been show-n to contain irjormation that
allow the id entification of failure mechanisms in materials (Pollock,

] 981). "Fne (differential) amplitude distn%ution can represent peak

signal voltages of the AE wavetor-ms ranging from ] 00 >V (0 dB) to

10 V (](30 dB). The various failure m__hanisms are ty'pical]y seen

grouped together as characteristic humps or bands in the ampli-

tude dis_bution, and while the amplitude bands for such mecha-

nisms as plastic deformation and crack growth are widely sepa-

rated, there are other mechanisms whose characteristic amplitude

bands overlap. This ov_rla!6"i.n the AE failure mechanism ampli-
tude bands is accentuated by attenuation effects, espeda3y disper-

s/on (Miller and McInth'e, 1987). Here, because the specimens were

small, the attenuation effects in the AE waveforms were expected

to be minimal. ]t was therefore hoped that the amplitude distribu-

tions would have enough separation in the failure mechanism

bands to allow accurate prediction of ultimate strengths in the
aluminum-lithium weld specimens.

The amplitude distribution for specimen 01-5 is showm in Fig-



ure1.Note that there are five distinct humps or AE amp].itude
flail 'ure mechamsm) bands and 307 total AE events. Because the

logarithms of measurements tend to have normal distributions
(Termant-Smith, 1985), the various failure mechanism humps in the

amplitude distribution were approximated as such. This being the

case, the first mecha_,_m probably has amplitudes between 4-12
dB; the second mechanism ranges from approximately 8-20 dB; the

th.h'd from 19-29 dB; and the fourth from 34-35 dB. The fi,%h hump

is a single event at 91 dB representing specimen failure. It can be

seen that therekssome overlap between thefirst and second and the
s_cond and third mechanisms; moreb\'er,:inasmuch as the first

hump does not appear to be normally distributed, there may well
be more than one mechanism buried with.in it (Kouvara.kos, 1992).

Modeling these humps and determLning the effect of the various
mechanisms is where neural networks come into play.
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Figure I_'fferential amplitude distffbution for weld _ecimens 01-5.

Neural Networks

The beau_" of neural net-works lies in the fact that they can take
into account the effects of the various failure mechanisms without

explidtly identi_ing and/or isolating them born the rest of the

data. Moreover, given the appropriate structure and input, neural
networks can learn all the pertinent data interactions and make

accurate predictions using the entire data set, re_azd]ess of extrane-
ous data (such as AE from rubbing noises) or data overlap and

without having to resort to multivariate statistical analysis. These
brain-like responses are generated fl'u'ough the use of artificial
neurons.

An az_.ficial neuron in its simplest form is shown in Fiom=e 2(a).
Here the wi are the weight vector components, and the xi are the

input vector components. Within the artificial neuron each input

vector component is mu.ldpSed by its rest'five weight vector

component; then these products are summed up over all the inputs

to yield the NET ou_ut:

(2) NET = .Lw,xi

Such a neuron can be used to model linear processes or provide a

linear mapping from hhe input to the out-put.

In order to accommodate nonlinear mappings (solve nonlinear

problems), a nordinear activa tion Kmcfion, F, must be applied to the

ou_ut as sh.own in Figure 2(b). The nonlinear activation
function employed here is the sigmoid (meaning S-shaped) or

squasb2ng _nction:

Fig'.Lre 2---(a) An artificial neuron in its simplest form,and (b) an
art_ficial neuron with a nonlinear acfvat_an _,znction.

(3) OUT = F(NET) = [1/(1 + e'"Er)]. 0.5

As the vaJue of NET approaches large nega_ve values, OLT
approaches a lir_g value of -0.5;when .NET isequal toO,OU-I"is

equal to 0; and as NET grows large in a posi_ve sere, OUT
approaches a value of +0.5. Figure 3 is a plot of this func_on. In
addition to allowing the solution of nonlinear problems, the nordin-

ear o_2n pro_,ided by the sigmoid activation function allows the
same neuron to process both very large and very small inputs

without noise saturation problems (Wasserman, 1989). T'rd.s two

layer net_qork _ith mul_ple inputs and a nonlinear ac'dvafion

_nction is k_o_',_ as a percep_on.
Many problems cannot be represented by a single nonlinear

mapping. For such problems, multiple or nested nonlinear map-

pings can be obtained by cascading layers of perceptron.s together

to form multflayer networks. These consist of an input layer, an
ou_ut layer, and one or more mJdd_le or hidden layers. It should be

mentioned that multi.layer net-works pro, fide no increase in compu-
tational power over two layer networks __rdess nonlinear a c'dvation

fi.mctions are included withLn each layer of neurons (Wasserman,
1989).

+ 0.5

OUT 0.0 Sigmoid

i D
-0.5

-5 0 S

NET

Figl_re 3--Sigmoid activation function.
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From Figure 4 it canbe seen that the amplit'ud e histogram, E(AI,
:s an approximation to the actual amplitude distribution, c(A)
, Zv.rada, 1.o9.2). Each rectangle in the h.istogram (Figure 5a) can be

::-.odeled by a three layer neV,,'ork consisting of two percept-tons in

=-a.-a!iel followed by a single neuron to sum their out-puts (Figure

Binary activa lion functions in the perceptrons are used to create
::',e square comers of the rectangle: one percept::on to map the up
:;de and one to map the down-side. Tkis.binary approximat'ion to

!Se amplitude histogram is designated E(w,:i,A), where w,) denotes
:he Lntercormection weight to neuron i from neuron j. l'xrhen the

"!::am, acth,ation hancfions are replaced by continuous activa_on

f--nc,5ons, such as the sigmoid, the result becomes a smooth line

._.?proxL"nation, e(wq,A.), to ",.heactual amplitude distribution, e(A),

crea ring sig'moidal humps instead of rectangles (Figure 5a). Hence,

this three layer network provides a nonlinear mapping followed by

a linear mapping. More commonly, mulfilayer networks employ
nonlinear activation hanctions throughout, meaning that each neu-

ron layer produces a nonlinear mapping. Such is the case in this

a Fpl.icatio_
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Figure 4.--Amplitude histo_am.

Training is accomplished by adjusting the intercormecfion

weights such that know'n input amplitude data produce knov,.'n

ultimate strengths as outputs."l-hismeans that inputting the ampli-

,_ad e _fion for specimen 01-5 should 3,5eld its ultima te s_'ength

of 51.5 ksi (0. 355 kPa) as the output. The known input (amplitude

distribution) and target output (ultimate strength) constitute what

is called a training pair. When both the input and the output are

known, the training is designated supervL_ed learning. Typically,

several training pairs (specimens) are needed to train the net'work

and arrive at the appropriate weight components. Once the net-
work is h'ained, a set of test data is used to verify the prediction

ao:uracy of the neural network The test data set, like the training

set, consists of known inputs with known outputs. Thus, a predic-

tion error can be calculated and network performance assessed.

Sockpropogafion

Bad<ward error propagation or backpropagafion is a training
method that compares the actual output of the network with the

ex _-_K-ted or target output, then baclcpropagates adjustments in the

weights proportional to the caloalated error. The object of training

is to adjust the weights such that the application of a set of inputs

vroduces the desired or target output. Hence, network training is

t_o step procedure---forward and backward--propagating the
inputs and their concomitant activations forward to the output
laver, then propagating the error backward from the output layer
t h'rough the hidden layer(s) to upgrade the interconnection weights.

For the ANSim software package used herein, a bias neuron is

i nc]ud ed in every layer except the output layer (F'_gure 6). Each bias

1

...
- -'''" i &

." $

Fig'are 5---(a) Amplitude histogram rectangle and (b) the

_zeural network necessary to model it.

neuron has a constant activation value of + 0.5 and is connected to

all neurons m the succeeding layer (Dayhoff, ] 990). The biases, FLke

the interconnec'don weights, are ]earned during backpropagation.

Thus, each forward pass through the hidden and output laver
neurons Lmplements the follo_-ing activation equations (ANS_m,

1988):.

(4) _',_'r'ETi-- 0i + *-_ wijOLT]"j

and

(5) OUTi = [1/(1 + e'_Tn)] - 0.5

where 0i is thebias for neuron i, and wi_ is the intercormec'fion weight

to neuron i from neuron j.

The bias neuron provides a constant tha-eshold term Oi in the
weighted sum of the neurons in the succeeding layer which trans-

lates their sigmoid functions to the left or right depending upon its

sign (Figure ¢"3.This bias term results in an improvement on the

convergence proper'des of the network during the training phase by

keeping the sigrnoids operaGng at their =rddra.nge values.

B_a_ Neuron

_c_s

Figure 6---A typi_l thret-layer network "_th bias rtturons.
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Biases and weight adjustments in the va_,ious layers are calcu-

lated using the generalized delta rule. _/s is a steepest descent
method of computing the ;mterconnec'donwe!ghts that "m._. es.
the total squared output error over a .seto| _au'ung vectors (pa.u's).
Each pass through the traLning .set is ca.Ueci a c'yc.]e.._,_ter each
_g cycle, t, the following equation Lsused to calculate the total
normalized root mean square CR.MS) error, 6i, for output neuron i:

(6) & = {[EpLCTARGET_ - Obq'..F]/PI} in

Here, p is the training pair or pattern, P is the total number of

training pairs or patterns, iis the output neuron, I is the total number

of output neurons, and TARGETi = target output for neuron i.

The weight matrix changes are then backpropagated through

each layer] within the net-work using the equation

(7) w ij(t+'l) = rI(_iOU'Tj) + a w ij(t)

where rl is the learning rate, a is the momen 'b.m%6iOUTj is the

current weight change, and wij(t) is the previous weight change.
In theory, gradient descent is guaranteed only if L,-dLrdtesimal

changes are made to the weights. Because this would make the
traL, xi_g process unacceptably long, a settable lea.ruing rate, rl, is
introduced. The goal is to set the lea.rr_g rate as high as possible
without causing the R_MS error tooscillate sig-rJ.ficanfly. This term
is typically set between 0.01 and 1.0, depend.hag upon the difficulty
of the problem. The momentum term, a, is used to increase the
learning rate without making the tL.MS error oscillate. The momen-
tu.m determines what Portion of the previous weight d'm_nges will
be added to the current weight ch,xnges. Tl'ds term is usually set to
0.9. In summary, by applying the generalized delta rule for

backpropagation trah'_.ng, a multi.layer ne',_ral network can lea__ to
develop whatever features are necessary,to perform the desired

mapping from the input pattern to the target output

-0.5 t

.0.5

0.0 / Sigmoid_-a_slated le_t

to threshold at -0

t r

-O 0 5

Figure 7--5igmoid _anslation pr_qded _ threshold term 8,

EXPERIMENTAL PROCEDURE

The eleven 5/16 by 1 by 12 in. (0.79 by 2.54 by30.45 cm) tensile

test specimens were cut from butt welded sheets. Both sheets were
made of 2195-T87 alu.m.inum-hthium with a 2319 filler. In each case

the weld was in the center of the specimen and perpendiaalar to the

directionof pull.

A 10 kip (45360 kg)/min linear load ramp was generated by a
computer-controlled Tin.ius Olsen tensile test macb2ne. The load

cell output ranged from 0.00 to 1.00 V (0.00 to 36.3 kips [16465.68

kg]). A Physical Acoustics Corporation (PAC) 3000/3004 acoustic
emission analyzer and R15I piezoelech'ic sensor (with integral

preamplifier) were used to collect the AE data. The AE sensor was
taped to the specimen next to the weld and acoustically coupled

using Sonotrace 40 ultrasonic couplant. The PAC 3000 / 3004 thresh-
old was set at 0.3 V with a total system gain of 81 dB. This high

system gain and low threshold were necessary to sense the pre-

dominantly ductile failuremechanisms iruherent in the aluminum-
lithium alloy.

In order to develop the technique, all eleven specimens were

taken to failu:e with the AE sensor attached. Thee data were to be

used to train the neural network to predict ulE.mate strengths from

the AE data collected up to 25¢7¢ of the expected ulG,'nate slzength,
wKich would then become the proof load. The value for the

expected failure strength was obtained by taking the average of the

ulGmate strengths for the training set. Once the network had been

t-ained, the procedure would be to remove the sensor after the

apply_g the proof load, then have the network make its ulG"nate

strength prediction from the AE data taken up to that Point.

DATA INPUT AND NETWORK ARCHITECTURE

The objec_ve of this work was to predict the ultimate strength of

a weld specimen from its AE amplitude data at proof loads ',,'ell

below yield, such that no macroscopic damage is done to the

specimen. On viewing the amplitude distributionsfor all the weld

specimens, it was found that the AE events having amFStudes

greater than 50 dB were all associated with ultimate specimen
failure (Figure 1). Such events only occur at high loads and therefore

are not appropriate input for the prediction of u].timatestren_ks
from the AE data taken at low loads. Consequently, only the event

data in the amplit-ade range f-rom 1 to 50 dB were input to the
he,york.

In this case it was desired to map the extre.m4y nonlinear curve

E(A) produced by the _ input amplitude h.isto_am into a single
_E.mate strength output, 5_. Given the appropriate number ot

neurons in the bidden layer, according to Kolmogorov's theorem

(C.audfil, 1988), a three-layer network exists that can perform this

mapphng exactly. For the problem at hand, the input dimension

was m = 50, and the output dimension was n = 1; accordLngly, a

l'ddden layer of 2m+1 = 101 a_,'Gfidal neurons would be required to

produce an exact mapping. Urffortunate!y, an exact mapping for a

_ven amplitude d_tribution does not guarantee a good prediction

capability for other amplitude distributions.
Good prediction capability is obtained when the difference

between the estimated amplitude distribution, e(wq,A), generated
bv a mul_ayer network with sio_moid ac*dvated neurons, and the
actual distribution, e(A), is mirSmized (Zurada, 1992). Th_ error

minimization is accomplished by making adjustments to the inter-

connection weights wii during supervised tra.in_g using several

repr_entative input-output mappings or training .F_rS. Thus, an

exact mapping is not desired_rather, a weighted approximation

that mL'-J.m&zesthe error over all the traL,'dng pairs. =

Since the desired mapping was going to be approximate any-

way, it was decided to sL,'npUffy, the problem further by'int2"odud.ng

a second appro_,mation. Grouping the amplitudes into the previ-

ously discussed faiM'e mechanism bands, the size of the l'ddden

layer, and hence, the training time, v-as reduced considerably.
Given that there were four failure mechanisms within the range of

1-50 dB (Figure 1), a reasonable guess for the reduced dimension-

ality of the problem was m = 4; whereupon, the number of neurons

in the hidden layer necessary to exactly map the four humps

became 2.m+1 = 9, which agreed quite well with the two neurons

(perceptrons) per hump Me suggested previously. The sigmoid-

generated humps shown in Figure 8 represent an approximation to

the normally distributed humps of Figure 1.

Prior to traird.ng the network, the intercormection weights were
initialized to small random numbers_ berween- 0.5 and + 0.5, and the

amplitude and ulGmate st'rength data ,,,,'ere normalized to fit into

the same range (Law';ence, 1991). Designating the total number of

acoustic em_sion events in the amplitude distribution up to the

proof load as E,,_, the normalized events at any given amplitude,

NE(A), were obtained from the equation

(8) NE(A) = [E(A)/E_] -0.5

where E(A) was the number of AE events as a function of ampli-

tude, A, from the amplitude d_tribution. The actual ultimate

strengths, 5., were normali.zed similarly:

(9) N% : ([S_- (SO,]/[(SO. - (SO,J}- 05

v, ith NS, the normalized ultimate strength, (SDI the lower range of
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Fig-are 8---Sigrnoid-generated failure mechanism humps.

:he expected ultimate strengths, and iS,,), the upper range of the

expected ultimate strengths.
Here E,_ was chosen to be 250 (slightly greaterthan the max_-

mum number o£ events in any one of the eleven AE d a ta sets), while
,S ,)1 was set at 45 ksi (0.310 kPa), and (5,,%, was set to 55 ksi (0.37 k,Pa).
.a2] o£ the above normalizations were effected to fadlitate network

t-raknLng.: - - '"

As ..was mer_tioned previously, several training pairs (s-ped-

mens) were n-eeded to train the network. It was also necessary to

ha,,eSd_8._i _/iihy i_ the t=_g _ts such t_t then_'_ork
would be able to make valid generalizations for u_n_bamil.iar cases_

a good distn'bution of possible inputsand ou_uS, plus any border

- ases (Lawrence,. 1991. ). There/ore, the five spedmens chosen for the

ainmg set included the SF_-_ens _,'ith the highest ultimate

._t:rength, the lowest ultimate strength, and three intermediate
v-,dues: 01-5, 01-8, 01-12, 01-13, and 01-14.

Some general rules apply ",,,'hen developing the network azc.h.i-

:ecv.zre for optimum performance (Bailey and Thompson, ] 990). To

L,'_prove accuracy on the _irdng set increase the size of the hidden

_ayer(s). Alternately, to improve generalization capabilities and

_hus improve performance on new cases, reduce the size of the

bidden layer(s). The optima] size for the hidden layer(s) is a balance

bet'ween the objectives of accuracy, and generali_fion for each
apphca_on.

Table 1 Summary o', ,"he Neural Ne,'h_ork Training

R.MS

Network Percentage Training Training
Name Load Data Cycles Error

BP A.05.N,'ET

BP A.03.NET

BP A.01.NrET

100% 733 5%

]00% 862 3 %

100% ],019 1%

BP B.05.N'ET

BP B.03.N'Er

BP B.01_NET

50% I ,096 5%

50% I ,3S4 3%

50% 1,666 1%

BP.C.05.NET 25 % 9] 4 5 %

BP.C.03.NET 25 % 1249 3%

BP.C.0I.NET 25% 1,613 1%

I_ Mal_ _¢a_tiOrg_pleml:,_ 1993
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RESULTS

The nehvork architecture was optimized through _al and
error. This resulted in an i.nput layer of _:'t'v neurons for the AE

amplirode data, one hidden laver contaL-_g.eisht neure:'_ ,'or

failure mechardsm mapping, and an output layer compr;.sed of a

sir_g]e neu:on for ultimate strength. All the neurons were .':ul]v

intercormected, making a total of 400 intercomnection weigh{s

beh<een the input and the hidden layer, S behveen the hidden laver

and the output, p]us 9 biases.

A summary of the neural ne_vork t'rainLng is provided in Table

1..adtogether, nine net-works were _ained using the norm _a2ized

amptimde data and the normalized ul tLmate stren_,_ from the five

sped,men training set. In each case the learning rate was set to 0.2
and the momentum to 0.9. Three networks were trained using ] 00

percent of the AE amplitude data from load inception to sped.men

faflua'e, one to a 5 percent K.MS tra.i.ning error, one to a 3 percent

error, and one to a 1 percent error. Th_ procedure was then

repeated for three networks using the AE data up to 50 percent of

the expected failure load and for three using the data up to 25

percent of the expected failure load.

Because the ulGvnate strength data were normalized prior to

input, the output predk"don values from the neural ne_,,'ork were
al__ in a normalized format As s-uch, they had to be denormalJ2ed

before any compa.d_ons could be made. This was accomplished by

inverting Equation 9:

(10) {G);;,e = (S:h + [(S:),, - (S,_)-j[(NS_). _,_ + 0.5]

with the pred subscript denoting the predicted value.

Table 2 presents a summary of the actual versus pred.i_ed

u]fi..,,',ate strengths and the as__x::iated errors for the three networks

that were trained to a 3 percent RaMS training error. U'he 3 percent

RMS training error seemed to optimize the predic'don capability.)

The AE data from all eleven specimens were applied to these three

networks. This included the five spedmens used as the training set

and the six spedmens from the test set. Note that the predic'Son

errors on the five train_g set s_ens were very small, as

expected, while the predic't_on errors on the six test set specL,'nens
were of the same order of magnitude but slightly larger. The worst

case error for the 25 percent load d a ta was +2.6 F_-a-cent for specimen
01-15.

Becau_,.e the 25 percent load data contained the least amount of

AE data, they ",,,'ere expected to )Seld the largest error, w_th the 50

percent data having the next largest error, and the 100 Percent data

ha',Gng _rde or no error. This, however, was not found to be the case.

Instead, the resulting errors were approximately the same for all
three data sets.

Acoustic emission due to gripping noise was experienced for

the first few h_ndred pounds of load before each specfimen became

seated in the test machine grips. The amount of AE activity associ-
ated v,ith grip sllp varied from test to test. W_i]e it was a_ntic_pated

that this extraneous data might prevent accurate predic'dons, the
neural networks were able to account for this effect and accurately

predict ultimate strengths without removing it from the data set.

A few suggestions may be u_]i._ed for improving the prediction
accuracy,: (1) increase the accuracy of the input load data; (2)

increa._ the number of specimens in the training set; and/or (3) a d d

another AE parameter such as signal duration to allow better
discrLwinafion (Hill and Ely, 1992) between the various failure

mechanisms. The other option is to employ probabil_tic neural

nel-works, or PN._s (Specht, 1990; Song and Sc_hmerr, ]992). This
would eliminate the need for a larger training set, because a good
statistical sampling is all t.h_t. _ required, and it would speed up the

training process, since ordy a single forward pass through the

network is required. Also, becEuse their activation fianctions are
normal distribuatSons, PNNs might provide a more accurate fit to

the normally distributed failure mechanism humps.

Besides accuracy, the other area of concern was that all of the
welds tested here were essentially good welds. While porosity was

observed in some of the specimens (01-5, 01-7, and 0l-12), it was not
enough to sigrdficanfly affect their ultimate strengths. Moreover,

there were no cracks nor any inclusions, and no areas of lack of

_ 2 ..



Tobte 2 Summory of the A¢:'ool vs. _eclicted Uttimate St:enGths of the Aluminumr--Uthiurn We_c SDecimens

5pec- Actual 100% Load 50% Load 25% Load
[men L'lt 5_r Data Data Data

(ksi) Predided _'_Error Predicted ,C,Error Predicted
L'lt Sir [ksil" Lqt Sir (ksi)" Ult S_ [ksi)

% Error

01-5+ 51.5 51.0 -0.97 51.0 -0.97 51.0 --0.97

01--6 51.4 50.1 -2.53 53.0 -2.t-'2. 50.6 -1.5

01-7 51.2 __.0 -2.34 49.9 -2._:4 49.9 -2.54

01-8+ 51.0 50.9 -0.20 50.9 -0.20 51.0 0.C',0

01-9 50.8 50.6 -0.39 50.4 -0.79 30.3 -0.9S

01-10 50.8 50.3 --0.98 50.3 --0.98 53.3 --_.9_

01-11 50.6 50.1 --0.-°9 53.3 --.0.59 50.4 --,2,.29

01-12,- 49.9 50.0 0.20 30.0 0.20 50.0 0.20

01-13- 49.1 49.5 0.82 49.5 0.82 49.5 0.82

01-14+ 50.4 50.5 0.20 53.5 0.20 50.4 0.{)3

01-15 49.3 50.6 2.22 53.3 1.62 50.8 2.63

+ Training set " ('Note: ksi u.--d_ x 0.006595 = k?a)

penetration or lack of fusion. What is needed for future tesGng is

some truly defective weld sped.mens. TraL'xing on beth good and

bad samples would then allow the network to predict the effect of

defects on the ultimate streno_& of alu.mhnum-l.ith.ium welds.

I5 a quantitative measure of s_-_ctural L_tegnty were needed,

this tec.hnique could be extended to predlcG'_g the ultimate in-

service strength (burst pressure) for the external tank itseff. Using

a backpropagation network at least three exte:'nal tanks would

have to be hydroproofed to failure, two of which would contain
known de.Sects; five or six external tanks would be opGuxal for

traL, xing purposes. By u_lizing a probabiL;stic neural network, the
number of full-scale tanks take__ to failure could probably be
mL,-dmized to three. Once trahned, the neural network would be

able to predict burst pressures in future external _'@,s horn the AE

data taken at hydroproof pressures well below Held (H3.1, 1992).
The obvious drawback to this scheme is the prol'dbitive cost of

taking three external tanks to failure.

Since verification, not quantification, of s_ac_-al integrity is

nor'w_ally the goal, a more cost-effective approach would be to use
AE to monitor flaw growth activity during hydroproof (AS.ME,

1988; ._-I'M, 1987). Since growing flaws always em/t and their

acoustic signatures are disGnctly dLfferent from other mechanisms

and very locatable, radiography could be applied to acoustically

active flaw growth areas only. Th_ would provide a means of

reducing the 100 percent x-ray inspec_on requirement currently
imposed on the external tank welds (Nu.nes et al., 1984). Imple-

menting such a procedure on the external t_-_,k would provide

tremendous cost savings while mainta.i_ng the 100 percent inspec-

tion requirement for man-rated vel-ddes.

CONCLUSIONS

Ultimate strengths can be predicted Lnalunninum-_ th.ium welds

using .KE a.rnpE_de data taken at loads up to 25 percent of the

expected ultimate strength. Th_ prediction was accomplished

through the use of a hatly interconnected backpropagation neural
network with a single hidden layer. TEe ne,_'ork automatically

accounted for the AE activity associated vdth grip sl_p (through the

interconnection weights) without havLng to remove this extrane-

ous data a pr/on" from the data set. It also seemed to adjust for the

overlap in the failure mechanism amplitudes. All of this was

accomplished vcith a relatively small tra/ning set of only five

S peci2"_ e r_5.

The fact that the prediction errors were essentially equal for the
networks trained on the AE data set taken up to the ultimate load

(100 percent load data), up to 50 percent of the ultimate load (50

percent load data), and up to 25 percent of the ultimate load (25

percent load data) meant that the same basic ul_.mate strength
in.for-_ation was inherent in all three data sets. Thus, whatever AE

part-.meters were keying the netw'ork prediction of ultimate strength

were independent of any reduction in the AE data sets. Th_

suggests the possibility of obt_G'_g accurate ultimate strength

predictions from the AE data at proof loads even lower than 25

percent of the expected ultia_ate load.
Fina.Uy, the +2.6 percent worst ca__ ultimate strength predic'don

accura_ at 25 percent load was re_D" dose to the =1.7. percent (=

0.005 V) ac ,curacy of the input load data. Since the network predic-

tion accuracy cannot exceed the.acc',=acy of the input data, the

net_-ork trained down to a 1 percent KMS error had la.rg_" predic-

tion errors than either the networks trained to a 3 percent or a 5

percent error. An increase in ac ,¢u.r-acy of the input load data from

three to four si,_icant figures may well improve the'pi:_c_dons

to within ±1 percent CKa_oo, 1988). The preqLi."cti0n.'ac.cu_cy of the

net'works was probably a_Lso constr-aLned by the Liam.ited sLze of the

tra.Lv.ing set, only five sa.,mples (as oppc_., to elev_,_ for KaZoo's
work).
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